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Abstract: We propose a new formulation of the stochastically based minimally 
backed-off operating point (MBOP) selection problem. This scheme aims to 
combine the steady-state notions of profit with the dynamic, constraint observing 
notions of MPC design and tuning. The proposed formulation has a convex / 
reverse-convex form, and is readily solved globally via branch and bound. The 
formulation is trivially extended to the partial state information and discrete-time 
cases. 
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Real-Time Optimization
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Minimally Backed-off Operating Point 
(MBOP) Selection
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Goal: Bring the Backed-off Point as close as 
possible to the Optimal Steady-State. 

Constraint: Do not allow the Expected Dynamic 
Operating Region outside the Constraint Polytope.

Steady-State Operating Line: Backed-off Points 
further limited by the Steady-State model. 

Controller Tuning: Different tuning values will 
change the Size and Shape of the Expected 
Dynamic Operating Region.



Department of Chemical & Department of Chemical & 
Environmental EngineeringEnvironmental EngineeringIllinois  Institute of TechnologyIllinois  Institute of Technology

Illustrative Example
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(EDOR)

Design Objectives:

Steady-State: Put the average mass position 
as close as possible to the upper bound 

Dynamic: In the face of disturbances, do not 
allow the mass position trajectory to extend 
beyond the upper bound. 

Backed-off Point (BOP)

Upper Bound on Position 

where

System Constraints:
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Example Problem Formulation
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Numeric Solutions
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FSI Case: Full State Information. 
Controller is

Case A: Same as FSI Case. 

Case B: Same as Case A, but  max force
changed from 15 to 18.

Case C: Same as Case A, but min force 
changed from 0 to 9.5. 

)()( tLxtu =

PSI Case: Partial Information: 1 Velocity Sensor.

Controller is

where          is from a state estimator. )(ˆ tx

)(ˆ)( txLtu =
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General MBOP Formulation

Dynamic System in Actual Variables:
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Controlled System in Deviation Variables:
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General Problem Formulation:
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Constraint Convexification Theorem
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Reverse-Convex Constraints  
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used to find Globally Optimal 

Solutions 

Reverse-Convex Constraints required to 
Guarantee EDOR within the Polytope: 

2
max,,

2
min,,

)~~(       and       

 )~~(

iissi

iissi

dz

dz

−<

−<

ζ

ζ



Department of Chemical & Department of Chemical & 
Environmental EngineeringEnvironmental EngineeringIllinois  Institute of TechnologyIllinois  Institute of Technology

Reactor Furnace Example
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Numeric Solutions
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Profit =  – 0.01 CO2 + 10 Fin – 30 Ffuel PSI case uses sensor at TR
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Comparison of Profits
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OSSOP: 

Profit = $100,704

Case A: Same as FSI Case.
Profit = $100,698

Case B: Same as Case A, 
but fuel feed bounds 
changed to 10±0.25.
Profit = $100,449

Case C: Same as Case A, 
but O2 concentration 
bound changed to 4%. 
Profit = $100,599
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