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Abstract: We propose a new formulation of the stochastically based minimally
backed-off operating point (MBOP) selection problem. This scheme aims to
combine the steady-state notions of profit with the dynamic, constraint observing
notions of MPC design and tuning. The proposed formulation has a convex /
reverse-convex form, and is readily solved globally via branch and bound. The
formulation i1s trivially extended to the partial state information and discrete-time
cases.
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Real-Time Optimization
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Minimally Backed-off Operating Point
(MBOP) Selection

Goal: Bring the Backed-off Point as close as
possible to the Optimal Steady-State.
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Illustrative Example

Design Objectives:

Steady-State: Put the average mass position
Mass ¥ as close as possible to the upper bound
max

| |

Dynamic: In the face of disturbances, do not
f w X allow the mass position trajectory to extend

ro
min beyond the upper bound.

Svstem Model: Backed-off Point (BOP)

Upper Bound on Position
¥ pp

m - {_02 _13} m + m S+ m w e e }

where r is the mass position, v is the velocity,

Mass Position

£ 1s the input force (MV) and Expected Dynamic
. . Operating Region
w 1s the disturbance force (EDOR)
>

System Constraints: .
= time

—1<r<1 and 0L f <16
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Example Problem Formulation

min —7

r afa Xmin > ¥max > Ymin > Ymax » é/x >é/u > L> ZXZO

s.t. 7 =37,

_2<F<0, —12.8< (<22
X =r+2,x =T,

u =f+128u_ =f-22,
S NGRS

2 2
é/u < umin s é/u < umax b

é/x = [1 O]Zx[l 0]T9 gu = LZxLT’
(A+BL)x_+X (4+BL)
+G2,G" =0

~N

7 and f are deviation variables w.r.t. OSSOP.

x,... 1s distance from BOP to constraint.
2,/¢ . 1sthe EDOR height.
V¢, <x.. guarantees EDOR within constraints.
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Numeric Solutions

Eos g
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p= ol FSI Case s ‘
PSI Case ‘ 20.45 ‘ Case A ‘

-0'54 6 8 10 12 14 16 6 8 10 12 14 16 18 20
Input Force (N) Input Force (N)
FSI Case: Full State Information. Case A: Same as FSI Case.

Controller is  u(t) = Lx(t)

Case B: Same as Case A, but max force

PSI Case: Partial Information: 1 Velocity Sensor. changed from 15 to 18.

Controlleris  u(t) = Lx(t) Case C: Same as Case A, but min force

where fc(t) is from a state estimatof. changed from 0 to 9.5.
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General MBOP Formulation

Dynamic System in Actual Variables:

s=As+Bm+Gp, z=Ds+Dm+D p, d_. <z <d

Controlled System in Deviation Variables:

x=Ax+Bu+Gw, u=1Lx, Sizeof wgivenbyX .

General Problem Formulation:

. T~ T ~
~ o~ {Illn dS SSS + dm mSS
Sss s Mgs 1255 ’gr L’ZXZO

~~

s.L. O — AE;‘S +Br7lss9 2Jss = ng;s +Du’%ss’ dmin S 2Jss S gmax
gz‘ < (Ess,i _Jmin,i)zﬁ gi < (Ess,i _Jmax,i)z’ I = 1"'nz
é/i — ¢z[(Dx +DuL)2x(Dx +DuL)T +DW2WD£]¢iT’ i: ln

0=(4+BL)X_+X (A+BL) +GZ G"

z
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Constraint Convexification Theorem

1 stabilizirg L,X >0, and &, i=1---n,
st. (A+BLE +X (A+BL) +Gx,G" =0, (. <z, i=l--n
and ¢ =¢[(D,+DL)X (D,+D,L) +D, > D 14", i=1--n

if and only if

1 L,X>0 and &,, i=1--n,
st.  (AX+BY)+(AX+BY) +GX G' <0, ¢ <z’, i=1-n

é/i _¢ti Zw D£¢iT ¢z‘(DxX +DuY) >0 =1
) l: --onZ
(D.X+D,)Y) ¢ X

z

and
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Reverse-Convex Constraints

5
! Branch and Bound Algorithm
b, ) Y lo.g used to find Gl(?bally Optimal
Solutions
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Reactor Furnace Example

CO, O, Out
> Manipulated Variables:
Vent * Reactant Feed Rate
Position _\ﬁff * Fuel Feed Rate
* Vent Position
F, T, \ T, T,
Furnace > Reactor >

State Variables:

Fuel Feed Rate T

* Reactor Temperature

Disturbance Input: * Furnace Temperature

» Feed Temperature il b R

¢ Furnace CO
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Numeric Solutions
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Profit= - 0.01C,, +10 F, - 30 F , PSI case uses sensor at Ty
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Comparison of Profits

4 OSSOP:
1.011 ‘ ‘ ‘ ‘ | Profit = $100,704

101 *#——— .

Case A: Same as FSI Case.

1.009+ - Profit = $100,698

1.008
Case B: Same as Case A,

but fuel feed bounds
1 changed to 10£0.25.

Profit = $100,449

1.007 ¢

1.006

Reactant Feed Rate (bbl/day)

1.005 - i Case C: Same as Case A,
OSSOP but O2 concentration
bound changed to 4%.
100194 496 498 500 502 504 506 Profit = $100,599

Reactor Temperature (deg F)
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