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INTRODUCTION 

CONCLUSIONS 

RESULTS 

METHODOLOGY 

Continuous powder mixing is a crucial unit 
operation in many industrial processes (e.g. 
pharmaceutical, cosmetics, food, catalysts) since 
poor blend homogeneity can significantly 
affect the quality of the final products. 
 
 
Current modeling approaches range from first-
principle based models (Discrete Element 
Methods), data-driven models (Response Surface 
Methods, Kriging & Neural Networks), or hybrid 
models (Population Balance Models). However, a 
methodology which can combine mechanistic 
understanding, microscale and macroscale 
information, design aspects, material 
property effects at low computational cost is 
missing. 

 

Periodic section modeling 

 


 
2 2

0
( ) ( ) ( , )c bx t E t x dt

σc
2(x) variance decay in continuous mixing as a function of location x 

σb
2(t) variance decay in periodic section mixing as a function of time t 

E(t, x) residence time distribution measured at location x in continuous mixing 

 

Batch-like mixing as a 
function of time 

Cross-sectional mixing 
as a function of location 
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Step 2. RTD-t curve at different location 
 in continuous mixing 
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Step 3. Cross-sectional variance decay and  
prediction in continuous mixing 

Axial Location z (mm) 
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Step 1. Variance decay data in PS 
batch mixing 
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kc variance decay rate in continuous mixing 

vx mean axial velocity 
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• Cross-sectional mixing performance is determined by the competition 
between local mixing rate and axial forward velocity. 
• By simulating a periodic section DEM simulation combined with the RTD 
information along the axis of the mixer, we can predict the mixing 
performance of a full scale blender at less computational cost 

Design of computer experiments 

Design/ Operation 

parameters 

Low bound High bound 

Blade speed (RPM) 40 250 

Blade angle (deg) 10 40 

Blade width (mm) 10 40 

Weir height ratio w/d (-) 0% 75% 

Fill level (-) 25% 75% 

Shaft angle (deg) -30 (upward shaft) 30 (downward shaft) 

Periodic Section DEM Simulation design 
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Design of computer simulations is based on Latin Hypercube 
sampling. A total of 64 samples are designed and simulated 
in order to cover the entire experimental region under 
investigation evenly.  

Reduced Order Modeling using Proper Orthogonal 
Decomposition 

Multivariate analysis of results using PLS 

 

 

 

 

 

 

Two PC components capture 
75% of the total variance.  

Shaft angle and blade speed 
are the two most effective 
variables in improving 
continuous powder mixing 
performance. 

• Critical operating conditions and design parameters for the 
mixing performance of a continuous blender are identified 
through a PLS model. 
 

• Based on the loading scores of different variables, 
simultaneously increasing blade speed and decreasing 
shaft angle is the optimal strategy for the improvement of 
mixing performance.  
 

• A reduced order model using data snapshots of the periodic 
section model based on PCA can predict distribution of particle 
properties inside mixer geometry. 
 

• The discretization of the geometry for extraction of average 
particle information is a critical issue in DEM-ROM model. If 
not enough number of particles are inside each bin, it is 
preferable to treat it as missing data.  

OBJECTIVES 

1. Investigate effects and significance of operating 
conditions (blade speed, fill level) and design 
variables (blade width, blade angle, shaft angle, 
weir height) on the performance of continuous 
particulate mixing. 

 
2. Combine Discrete Element Method periodic section 

simulations with Proper Orthogonal Decomposition 
methods to develop a fast reduced-order model 
(ROM) to predict blending performance at 
unexplored operating regions.  

 

FUTURE WORK 

•  POD aims to obtain low-dimensional approximate 
descriptions of high-dimensional processes through modal 
decomposition of an ensemble of functions or data  

• POD has been used successfully in literature for building 
reduced order models of complex CFD simulations1 to be 
used for control, optimization and flowsheet simulation. 

• When building a POD model using data ‘snapshots’ of the 
process, the method is equivalent to Principal Component 
Analysis 

 Identified challenges 

•  Data extraction from DEM simulations is in form of 
discrete values for each individual particle movement 

• Highly non-linear and non-smooth data 

 

 

 

•Discretization of DEM geometry and total number of 
particles play a huge role in the quality of the extracted 
data based on which the reduced order model is built 
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Methodology 

Identification of variables which will form the data base 
(X,Y and Z spaces). Design of computers for different 
input conditions based on Latin Hypercube Sampling.  

Discretization of process geometry for data 
extraction of Zk variables.    

Model training for input-output mapping using Kriging 
methodology.  

Yj=f (Xi)  where i=1,..,N and  j=1,..,M 

Perform PCA with missing data imputation for dimensionality 
reduction of state variable space (EM-PCA or Nipals algorithm) 

Model training for input- PCA loadings mapping using Kriging 
methodology.       

  pi=f (Xi) where i=1,..,N       

Xi  i=1,..,N   Input variable Space    (operating and design variables) 
Yj  j=1,..,M  Output variable Space  (blend homogeneity parameters) 
Zk  k=1,..,L  State variable Space    (distributed particle properties) 

Is average number of 
particles inside bin large 
enough to get reliable 

mean value of Zk? 

Discard 
value and 
regard as 
missing 
data 

YES NO 

POD- based Reduced Order Model 

Variable Number 

of PCs 

Total Variance 

(raw data) 

Total Variance  

(imputed missing 10%) 

ux 2 43.88 45.90 

uy 1 67.76 65.42 

uz 1 47.67 57.37 

Kinetic 

energy 

2 

42.74 58.21 

Total force 1 41.60 57.02 

Very few or no 
particles: 

Set equal to zero  

Large enough 
number of 
particles:  

Use average 
value 

 
 
 
 

Few number of particles: 
Consider as missing data 
(impute) 
 
 
 
 
 

• Experimental validation of optimal design strategy identified  
through this study. 
 

• Use of DEM/ROM model in an flowsheet simulation 
environment, for process design, optimization and control. 
 

• Implementation of proposed approach for full blender 
geometry where number of particles is significantly large and 
computational benefit will be greater. 
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Fuels. (2009) 

PLS model provides good qualitative insight and is used to 
identify significant inputs, however, a ROM/POD based model 
can give better quantitative insight about distributed 
variables inside periodic section. 

TWO-STAGE MODEL REDUCTION: 

Actual Mixer Geometry 

Periodic 
Section 

ROM/POD  
Model 

Periodic 
section model 
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Distributed State Variable Importance 

Velocity fields in x,y,z 
direction 

• Movement of particles within section 
• Velocity terms input to Population 
Balance models (PBM)2 

2Boukouvala et. al, MAME (2011) 

Kinetic Energy 
• Energy of particles  
• Prediction of stagnant zones 

Total Force 
• amount of applied force on particles 
modifies material properties  
(i.e. cohesiveness) 

•Total computational time ~ 60sec as opposed to ~2days 
for a single DEM simulation 
•Method manages to capture trends of distributed state 
variables sufficiently with a very few number of Principal 
components 
• Further improvement in predictions can be achieved by 
increasing the number of total particles of DEM simulation 


